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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-96k4

THE USE OF HIGHER-ORDER DIFFERENCE METHODS IN BEAM

VIBRATION ANALYSIS*

By Donald T. Greenwood**

+ OO O

SUMMARY

Simple and higher-order difference methods for the solution for the natural
frequencies of vibration of a uniform beam are compared. The same basic higher-
order method is used throughout for the interior cells, but three different
methods of boundary-condition representation are given.

Tables and graphs of the error in mode frequencies, as compared with a
. continuous beam, are given for the various methods as a function of the number
of cells. It is concluded that higher-order methods improve accuracy for a
given number of cells, with essentially no change in the yuantity of com-
puting equipment required.

*The work reported here was performed under NASA Contract No. NsG-63-60, ad-
ministered through The University of Michigen's Office of Research Adminstra-
tion, Ann Arbor.

**Associate Professor of Aeronautical and Astronautical Engineering, The Un-
iversity of Michigan.



I. INTRODUCTION

One of the most commonly encountered problems of structural dynamics is
that of the latersal vibrations of beams. With the advent on a large scale of
analog and digital computers of greatly improved speed and computational ef-
ficiency, it is worthwhile to teke another look at the methods available for
performing these computations. This report is principally concerned with im-
provements in analog computer methods of analysis of the beam-vibration prob-
lem. In particular, it is concerned with methods applicable to the electronic
differentisl analyzer. Nevertheless, it will be seen that the matrix formula-
tion of the problem and most of the results are directly applicable to digital
computation as well.

Until quite recently, all attempts to use analog computers in the solu-
tion of partial differential equations by difference techniques were re-
stricted to simple methods with accuracies of second order in the cell size
at best. In 1950, Fisherl suggested the use of higher-order differences in
the solution of these problems on the analog computer and indicated some of
the advantages to be expected. However, he was not concerned in his examples
with the beam equation and did not study the problem of boundary-condition
representation using higher-order methods.

This report considers in detail the adequate representation of boundary
conditions when higher-order methods are used, and presents the results of
rather extensive computations which enable one to obtain a feel for advantages
and disadvantages of each method. The analysis in the main body of the re-
port is concerned with uniform beams. The mode-frequency errors for a tapered
cantilever beam are considered in Appendix B and comparisons are made with
the continuous beam.

No anelysis of mode-shape errors has been included. However, spot checks
have shown these errors to be comparable in magnitude with the frequency errors.

The author wishes to acknowledge the contributions and helpful sugges-
tions of R. M. Howe of the Department of Aeronautical and Astronautical Engi-
neering, particularly with respect to the section on errors. Thanks are also
due C. K. Shah, who did most of the numerical computation, and J. W. Thatcher,
who alded in the digitsal computer programming.
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II. SYMBOLS

mode-amplitude matrix

constant coefficlents

-(1)-t [K]

difference matrices

an element of matrix B
constant coefficients
capacitance, constraint matrix
constants

difference matrix

Young's modulus

constraint force

lateral force per unit length
constant

constant

cell size

moment of inertia of cross section, unit matrix
mode number

system matrix [m]-l (k]
stiffness matrix

bendin;; stiffness of a cell

inductance, total length of beam



bending moment

mass, mass matrix

total number of cells

station designation, number of degrees ¢f freedom
resistance

S = 0 is the characteristic equation

-[K][B]-l. Also the time-dependent factor in the beam deflection
time

shear force

position along the beam

deflection amplitude

lateral deflection

eigenvalue for a continuous beam of unit length
a small perturbation of the designated quantity
frequency error

dimensionless lateral deflection

the square of a mode frequency

beam slope

eigenvalue for beam of length N

dimensionless position along beam

mass per unit length

dimensionless time

Il \VeR ]
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eigenvalue for difference beam of unit length

indices referring to row and column, respectively

reference value

transpose of the designated matrix

computed in the modal (¥) coordinate system

approximately equal to

amplitude of a sinusoidally varying quantity, determinant of a matrix
row matrix, or usual parenthesis notation

rectangular matrix, or usual brackets notation

column matrix, or usual braces notation



III. CONTINUOUS BEAMS

A. THE BEAM EQUATION

We will restrict ourselves to the study of the lateral vibrations of e
thin beam where linearity is assumed. The partial differential equation des-
cribing the motion is

e Ay R
- (EI +p =L = £(x,t) 1
2 " ae) TP &2 (=, (1)
where
X = position along beam
y = lateral deflection
t = time
EI = Ybending stiffness ,
p = mass per unit length
f = lateral force per unit length

It can be seen that Eq. (1) is of fourth order in x and second order in
t. For our purposes 1t is often convenient to write four equations of first
order in x.

o - §§ (2)
M = EI-g—i (3)
vV = %bﬁ- (4)
pgz_tg - -2_:’{+f(x,t) (5)

where

= slope of beam
bending moments
= shear force

<20
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This set of partial differential equations is equivalent to Eq. (1), We will
see that the analog computer approach to the problem 1s based upon this latter
set of equations rather than the origiral fourth-order equation.

B. SOLUTIONS OF THE BEAM EQUATION

1. General Solution.—In general, the parameters p and EI are functions
of x. Initially, however, we will assume that each is constant. Furthermore,
we will assume that units are chosen such that the coefficlents are unity.
Our principal interest is in the solution of the homogeneous ecquation, so let
us set f(x,t) = 0. Then Eq. (1) becomes

8_41+EZ=0 (6)

It may be seen that essentially the same equation can be obtained by trans-
forming Eq. (1) to dimensionless form and again setting f(x,t) = 0. Let

= ¥
< L
= X
¢ =1
r = L [EI
12V¥o

where L is the length of the beam. Then

il S-ald

(7)
gt Jr2

Equation (6) can be solved by the method of separation of variables .27
The solution is of the form

y = Y(x) T(t) (8)

[P



where
Y(x) = Cy cosVB x + Cz 8invVB x + Ca cosh VB x + Cq sinh VB x (9)
and
™t) = Gcos Bt + H sin Bt (10)

The solution is valid only for certain discrete values of the parameter B.
The constants C, Cz2, C3, and C4 are evaluated from the conditions at the ends
of the beam. The constants G and H are evaluated from initial conditions.

Let us now consider the equation for the eigenvalue B for various end
conditions.

2. Beam Built-In at Both Ends.—The boundary conditions for a beam of
unit length built-in’at both ends are

y(0) = y(1) = 0 (11)
0(0) = o(1) = 0 (12)
From Eqs. (9), (11), and (12), we find that
C, +Cy = O (13)
C2+Cq = O (1’4)
(cosJ—B - cosh \/E)Cl + (sin\/E - sinh ‘[E)Ca = 0 (15)
(- sin VB - einh \/E)Cl + (cos VB - coshVB)C2 = O (16)

giving the characteristic equation

+ OO O
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1-cosVpcoshVp = 0 (17)

and also

Ca - coss/E_-cosh\/E
Ci sinh\/E - sin VB

(18)

The first four eigenvalues are

22.37329

61.67282
120.903k
199.859%

Py
[ . |

The value B = O has no practical significance in this case and is omitted.

The ratio Ca/Cl is nearly equal to -1 for all modes, the approximation
being particularly close for modes higher than the first.

It will be helpful in the later development to express the form of the
deflection curve as a power series in x. Using a series expansion for the
trigonometric and hyperbolic functions in Eq. (9), we obtain

R ) Lo (B, BT, gt >
! 6! 10! 3! T 11!
(19)

or

¥Hx) = - 2c,€’f e, 2 B, > (20)

31 64 T8

Using Eqs. (2), (3), and (4), we can obtain the other oscillation magnitudes:

|O|:-2CIJEJEX-;'£+§§-§L"‘6+..> (21)

sl
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5
M| ¥ -eclaé-sl—sx+2'§"i-§:—"‘i+..> (22)

2
vl = - 20162<1 + x| g, B‘Z'-x-' (B2, ) (23]

3 Li ) 8!

3, The Free-Free Beam.—For the case of a free-free beam, the boundary
conditions are

M(0) = M(1) = © (2u)
v(o) = M(1) = O (25)

Substituting into Eq. (9), ve obtain
-Cy +C3 = 0 (26)
Co+Cy = O 27)
éosh JB - cos «/E)cl + Ginh JB - sin @ca = 0 (28)
éinhfa + sin Jécl + éoshJE - cos ~/E>c2 =0 (29)

giving, as before,

cz _ cos B - cosh VB (30)

Ca sinh JE - sin s/é

The eigenvalue equation is the same as for the built-in case, namely,

1 - cos VB coshVB = 0 (31)

OO O
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The value B = O has >hysical significance in this case but since the mode in-
volves no elastic deformation, it is omitted. The remaining eigenvalues are
identical with those for the built-in case.

The emplitude of the motion is

Y(x) = 2Cl(l+ﬁ+ﬁf—+...)+202 (féx+6§’fs+a§—’f9+...)
W) 8! 5: 9: (32)

giving the approximate amplitudes

o et B e dey

! 51 8! 9t
e = 2Ci~/.é-l+fxa-ﬁeﬁ+éx7-a4xa+..> (34)

} Lt Tt :
M 2 20, _szﬁ ] f).(a . e:ice ] e%’ + > (35)
s 4
Iv| ;2clﬁg~/ﬁx-?.§+3:—)fs‘66—fe+‘> (36)

If we compare the solution for the free-free beam with that for a beam
built-in at both ends, we note some important similarities. We have seen that
the nonzero eigenvalues are identical. Beyond that, the roles of the deflec-
tion y and the bending moment M are interchanged in the two cases as may be
seen by comparing Egs. (20) and (35) and also Egs. (22) and (33). Similarly,
the roles of the slope © and the shear force V are interchanged. This sim-
ilarity will hold even for the finite difference solution which will be ob-
tained later. Therefore it will not be necessary to carry out separate calcu-
lations for built-in and free-free beams.

L. 'The Cantilever Beam.—Thc boundary conditions in this case are

nnwun
C OO0
A~~~
F AW
O\ o=
— e e

Applying these boundary conditions to the general solution given by Eq. (9),
we obtain

(41)

"
(@]

Cl+C3

(42)

]
(@]

Ca + Cq4
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cos VP + cosh JE)C; + éinJE + sinh JE):a = 0 (43)
éithE - 8in ~/§>cl + éos JB + cosh JE):a = 0 (Lb)

From Eqs. (43) and (44} we obtain the eigenvalue equation
1+ cosvVp coshJ‘é = 0 (45)
and also

Ca __coswnNB + cosh\/E
Ca sinJE+ sithE

(46)

the ratio being approximately -1 for all modes higher than the first..

The first five eigenvalues are

Br = 3.516015
B = 22.03449
Bs = 61.69721
Bg = 120.9019
Bs = 19908595

Note that, except for i = 1, the value of f; in this case 1in approximately
equal to Bi.., for the built-in or free-free case.

The amplitudes are given by the equations

Y(x) = -201E«&2é+ %T:+%;g+...+g§(ﬁ§fa+ p;'x7+ £x11+.>]

T¢ 118

(¥7)

oo o

e o A e
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o] = -2C;@Ef§x+%+&+...+§l€&i+§'ﬁ+ xlo+“>-:|
. 1 * <

-3
M| = _2c151+%ﬁ+g_‘_>f_+."+ga ﬁx+§+ x°+“§J

v| = -2cls§33xa+é7"‘_7+...+° 1+Eﬁ+£"8_"‘3+..>] (50)

58 Cy 2!

Each of these expressions contains the same powers of x as was obtained for

the corresponding built-in case in Egs. (20) to (23).

5. The Pinned Beam.—The boundary conditions for a pinned beam are

[}
(o]

y(0) = y(1)

1l
o

M(0) = M(1)
Applying these conditions to the solution given in Eq. (9), we obtain
C, = C3 = C = 0
and therefore
Y(x) = Cz sinB x

vhere the eigenvalues are

By = 1242 (1 = 1,2, 3, o)

(51)
(52)

(53)

(54)

(55)
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The power series form of the solution is

Y(x) = Cac/Ex-agxs+B§x5-a£"7+..> (56)
3

Also

5: T4

ol = caVB(i- 22 32’,“ e, 57
M| = cas<~/5x+ ' ngs+ > (58)
vl = cas‘é’(uf‘;—‘f- ﬁf’f‘ + > (59)

The eigenvalues in this case are not close to those calculated in the

previous cases.

In fact, for the higher modes {large i), the eigenvalues tend

toward positions midway between those for the bullt-in, free-free, or cant-

ilever beams.

OO0 o
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IV. DIFFERENCES OF ORDER h®

Previously we have obtained solutions for the partial differential equa-
tions describing a continuous uniform beam. Unfortunately, the analog com-
puter cannot solve partial differential equations directly but must solve the
set of ordinary differential equations which are obtained by finite difference
approximations to the spatial derivative. Thus we will obtain solution ampli-
tudes at a discrete set of points rather then continuously as a function of x.
At the given points, however, the finite difference solution should closely
approximate the solution for the continuous hbeam.

A. FINITE DIFFERENCE EQUATIONS
An analog computer approach to the beam-vibration problem using finite

difference equations of order h® has been given by Howe and Howe and others.s’6
The procedure in each case is based essentially upon Eq. (60).

_az - “Yn + Yn+1 P’i & (60)
ox n+% " h B 2 3x3 né

The interval between stations is designated by h. Subscripts refer to the sta-
tion at which y (or one of its derivatives) is calculated. The last term is
the first error term and is not included in the computer mechanization. It is
glven to provide an estimate of the accuracy of the approximation. Equation
(60) can be derived by wréting the Taylor expansions about station n+% for y,
and y,,, and solving for 5¥In+& after eliminating yp,.

Using the approximation of Eq. (60) and agein assuming that EI and p are
unity, the beam equations (2), (3), (4), and (5) can be written in difference
form:

Yo + ¥

°n+% - __“_.E_E‘“_l. (61)
- o

M, = B ; n (62)

Vv . = ot ¥ne (63)



B v

Vg = V
Yy = = (64)
h

Note that displacements and bending moments are calculated at integer
stations whereas the slopes and shear forces are calculated at half-integer
stations. If one calculates all quantities only at integer stations, the re-
sult is to double the effective cell length and thereby to quadruple the first
error term. Therefore we will use "staggered" stations when finite difference
approximations to first derivatives are used.

The analog computer circuit representing a typical internal cell is
shown in Fig. 1. It requires five amplifiers per cell if one reverses signs
at adjacent cells.

Another approach to the problem is to approximate tne second spatial
derivative rather than the first derivative. In this case the finite dif-
ference approximation is

@i . Taed - 2n * Yan 2 gy )
Ox“In h2 12 x*ln (65)

and the corresponding beam equations solved on the computer are

Yn-1 = 2¥n * Yn#1

My " (66)
Y, “Mp-a *hiun - Mp+a (67)

The analog computer circuit for this case requires only 3 amplifiers per
¢ell and is shown in Fig. 2. This circuit is subject to exactly the same
finite difference errors as the 5-amplifier circuit and, in fact, can be ob-
tained as a direct reduction of that circuit.

B. PHYSICAL INTERPRETATION

There are two ways in which one can give physical meaning to finite aif-
ference approximations to the beam equations.

£ ONO O



e ad

FONO O

17

The first method is to consider a finite difference expression as an
approximation to a spatial derivative in the continuous beam_at a given point.
For example, the right-hand side of Eq. (64) approximates - ] , vhich, in
accordance with Eq. (5) for a continuous beam, is proportionaf %o the accelera-
tion ¥, of a local differential element.

The second method is to think of the set of finite difference equations
as representing exactly a lumped physical system whose response approximates
that of the continuous beam. The calculated values of accelerations, shear
forces, etc., at the various stations have their real counterparts in the
lumped physical system. This approach is helpful in gaining physical insight
into the meaning of the equations, particularly for simple differences. Two
lumped physical representations of this finite difference approximation to
the beam equations are shown in Fig. 3.

In Fig. 3a the beam is approximated by a series of massless levers con-

nected by pin joints. At each Joint a spring produces a moment (corresponding

to the bending moment) which is proportional to the difference in slope angle
Q@ of the adjacent levers. The mass of the beam is lumped into point masses
at the Joints. The deflection y is measured at the joints while the slope ©
is measured at the midpoint of each lever.

Figure 3b shows an electrical circuit analog of the lumped mechanical
system of Fig. 3a. It also is described by finite difference Egs. (61) to
(64). The displacement velocities are represented by voltages and the shear
forces and bending moments are represented by currents. The lumped bending
stiffnesses are represented by inductors, while the lumped masses are repre-
sented by capacitors. The transformers, each of turns ratio 1 to h, perform
the coordinate transformations relating slopes to deflections, and can be
considered as the analog of the massless levers.

C. BOUNDARY CONDITIONS

We have previously given the equations stating the boundary conditions
on a continuous beam for the various cases under consideration. We must now
write corresponding equations for the finite difference beam. First, however,
ve must decide whether to end the beam at a point where lateral deflection
and bending moment are computed (the "integer" stations), or at a point where
the slope and shear force are computed (the "half-integer" stations).

Experience has shown7 that higher accuracy can be obtained for a given
amount of computation (or degrees of freedom) if the end occurs &t a half-
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integer station for built-in or free ends. For the pinned case it 1s best to
end the beam at an integer station.

1. Built-In End.—Previously we have seen that the displacement y and
slope © are zero at a bullt-in end of a beam. Suppose, for example, that the
beam ends at station n+§. We must approximate the deflection at & half-
integer statlion where it is not usually defined. Using the Taylor expansion
apnroach and keeping only the first error term, we find that

12 Py

Yney * %(yn * ynﬂ) el (68)

n+§

Therefore, since Yn+k and °n+é. are zero, we see from Egs. (61) and (68) that

= 0 (69)

Yo = Ynn

implying that there is no lateral displacement at the integer station adjacent
to & built-in end.

2. Free End.—At a free end we find that the bending moment M and shear
force V are zero. Using reassoning similar to that of the previous case, we

find that for a beam ending at station n+&

My = M, = O (70)

5. Pinned End.—For a pinned end at station n the boundary conditions
are quite straightforward, namely,

Yp = © (71)

M, = O ' (12)

In case the pinned end occurs at station n+£-, the boundary conditions
are

+ OO0 g
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Yn = “Vnna (73)

Mp = -Mp4, (74)

b, The Use of Symmetry.—For vibration problems of a uniform beam where
the same boundary condition applies at each end, one can meke use of symmetry
to reduce the required amount of computation. All the natural modes can be
classified according to whether the deflection curve has even or odd symmetry
about the midpoint of the beam. Consider, for example, a beam that is built-
in at both ends. If one arranges the modes in order of increasing frequency,
then modes 1, 3, 5, etc., will have mode shapes with even symmetry about the
midpoint, whereas modes 2, 4, 6, etc., will exhibit odd symmetry asbout the
midpoint. (See Fig. 4.) In either event, however, one need analyze only one-
half of the beam since the motion of the other half can be deduced from sym-
metry.

For the case of even symmetry of the deflection curve, the bending mo-
ment curve will elso show even symmetry, whereas the slope and shear force
curves will have odd symmetry. Conversely, for odd symmetry in y and M,there
will be even symmetry in © and V.

The above symmetry assumptions are exact and therefore the same fre-

'quencies and mode shapes result as for the case where the equations are writ-

ten for the complete beam.

D. ANALOG COMPUTER CIRCUITS

l. Cantilever Beam.—The analog computer circuit for the cantilever beam
is useful in illustrating built-in and free end conditions. Two circuits are
shown in Fig. 5. The first circult requires 3 amplifiers per cell, the sec=-
ond, 5 amplifiers per cell. These are nominal values, however, and amplifiers
can be saved in representing the end cells because of the boundary conditions.
Thus it can be seen that the actual numbers of amplifiers required to repre-
sent a four-cell cantilever beam are 9 and 15, respectively. Cells can be
added by adding standard circults such as those in Fig. 1 or Fig. 2, repre-
senting interior cells.

2. Built-In Beam.—The computer circuits for a six-cell beam that is
built-in at both ends are shown in Fig. 6. Note that only one-half of the
beam is actually represented on the computer; the motion of the other half is
inferred from symmetry. Circuits are shown for even or odd symmetry about the
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center of the span. In each case the center occurs at & half-integer station.
Circuits for the case where the center occurs at an integer station could
have been derived by a similar process. This situation would arise for a
built-in beam with an odd number of cells, assuming, of course, that the ends
occur at half-integer stations.

3. Pinned Beam.-—The computer circuite representing a six-cell beam
with both ends pinned are shown in Fig. 7. The circuit for the case of odd
symmetry about the center, Fig. T(b), is particularly simple because of the
additional symmetry about the quarter points along the span.

The circuits to be used in the higher-order methods that we consider are
quite similar in general form to those of Figs. 5(b), 6, and 7. However,
most amplifiers will have four rather than two inputs.

E. MATRIX FORMULATION OF THE DIFFERENCE EQUATIONS
In the analysis of specific cases of finite difference beams, it is con-
venient to write the equations in matrix form. It is particularly important

to use this formulation if digital computations are to be performed.

In this report the beam equations are, 1n general, written as four first-
order difference equations. Using matrix notation, they are as follows:

© = (B ) (75)

M = (B2) (0) (76)

(V) = [Ba] (M} (17

($) = [Ba] (V) (78)
or

)+ K3 = o (79)
vwhere

(K] = -[B4][Bal(B2]([Ba1] (80)

FONO O
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Although the B matrices are rectangular in general, the K matrix must be square.
The natural frequencies are obtained from the determinantal equation

K - 21| = 0 (81)

vhere A\ is the natural frequency in rad/sec and I is the unit matrix. For the
case where the K matrix is n x n, there will be n values of A2 (roots) cor-
responding to the n natural frequencies of the system. .

As an example, consider the case of a six-cell beam that is built-in at
both ends. We will write the equations for modes with even symmetry at the

center. As before, EI and p are assumed to be unity. The matrix equations
are

a 1 1 y2| °
2l = 2 (82)
= ya

3 .

My 1 0] fg

Ma o -1 [%

va -1 1 o] [m

2| = % Mo (84)
Vs 0 -1 1) (Mg

2

¥z 1 -1 a

= % Vz (85)

¥a o 1 |'%

Assuming a unit cell size (h = 1) and performing the matrix multiplica-
tions, we obtain



a2

According to Eq. (81), the roots are obtained from

(6-33) -3
= 0 (87)
-3 (2-22)
giving the characteristic equation
M-8 +3 = 0 (88)

The roots are

2,2 0.39u4k9, T.60555

or

0.628052, 2.75782

M,2

These are the actual frequencies for the modes with even symmetry and
h = 1. For our purposes, however, it is convenient to assume that the total
length of the beam is unity. This implies that h = l/N » where N is the number
of cells, and results in multiplying each frequency by N2. Denoting this
normalized freguency by w, we obtain .

22.6099

®y

99.2815

&

f ollea\Vo N o]
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The same basic matrix formulation will be used in the computations through-
out the report. The use of higher-order differences will add to the numerical
complexity but will not change the form of the equations.

F. RESULTS

The results of computations of the normalized frequency parameter w using
differences of order h® are summarized in Tables II and III. The computations
are for built-in (or free-free) and cantilever beams for various numbers of
cells. The finite difference error is plotted against the cell number N in
Figs. 13 and 14. These results are essentially the same as those given pre-
viously by Howe and Howel+ and Michie,7 except that the higher mode fre-
Quencies are also included.

G. ORTHOGONALITY

We have seen previously that the equations of motion can be put in the
form

(¥} + K] {y} = © (79)

We can also write

m] (¥) + k] (y) = O (89)

where m and k are the mass and stiffness matrices, respectively. Comparing
Eas. (79) and (89), we see that

K] = [ (k] (%0)

Now, for the case of the first-order difference equations under considera-
tion here, both the m and k matrices are symmetric. In fact, the m matrix is
diagonal. It is always possible in these linear bilateral undamped systems
(whose kinetic and potential energies can be written as positive-definite

(]'
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quadratic forms) to find a coordinate transformation which will simultane-
ously diagonalize the m and k matrices. In this case the natural modes of the
system are said to be orthogonal.

The orthogonality of the modes is not surprising since we have already
seen (Fig. 3) that these equations represent exactly a lumped mechanical or
electrical system composed of linear bilateral elements. However, when we
discuss higher-order difference methods, we will find that the k matrix is
not always symmetric, in which case the modes are not orthogonal.

L)\ R o)
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V. DIFFERENCES OF ORDER h*

We have given a brief review of the calculation of eigenvalues for a uni-
form beam, using simple finite difference approximations to the spatial deriv-
atives. In this way we have obtained some physical feeling for the main fea-
tures of this method and perhaps some insight into the more promising approaches
to the use of higher-order differences. In the remainder of the report we
will consider several higher-order methods and indicate some of the advantages
as well as problems in their use.

A. CHOICE OF THE BASIC DIFFERENCE EQATION

Even before one gets into the questions concerning the representation of
boundary conditions, there are a number of possible choices one can make con-
cerning the basic higher-order difference equation to be used. First is the
question wvhether the approximation ought to be with respect to the first, sec-
ond, or possibly the fourth spatial derivative. We can immediately reject
the latter possibility on the grounds that it is quite sensitive to component
errors in the analog ~omouter circuit-8r9 Also there is the disadvantage that
other variables of interest such as 9, M, and V are not directly available
even though three amplifiers are required per cell.

The choice between approximating two second-order equations or four first-
order equations is more difficult. Let us consider each possibility in turn.

The most obvious approximation of order h* for the second derivative with
respect to x 1s given by the central difference equation

%ﬁl' ~ Yn-2 * 16yn.y - 30¥n + 16¥p4s = Yoo N g: éfx (91)
n

12h2 90 ox®

n

Using this approximation, the equations set up on the computer are of the form

Mn = El—a‘ “Yn-2 + 16}'11-1 - Boyn + 16Yn+1 - yn+2) (92)
h

Yo = -l;i-z- (Mn-a - 16M,_, + 30M, - 16M,, + Mn+9 (93)

[y —
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vhere unity values are assumed for EI and p. The analog computer nircuit re-
quires three amplifiers per cell and up to five inputs per amplifier. (See
Fig. 8.)

Consider now some of the higher-order approximations to §Z The usual
central difference approximation of order h* is Ox

s _1 h* &
0 " Ion Q’n-a -y, t 8yn+1 B yn+2> * 30 g}-‘sxln (94)

The resulting beam equations are

Sy
ox

o = ﬁ é’n-z = 8.y * 8ypy,y - yn+2) (95)
My = Ii'}'; <°n-2 - 86y, + 8oy, - °n+2> (96)
Vn = 1% < 2 - My + O, - Mn+z) (97)
¥, = Ig-ﬁ <vn_2 * BV, - BV, + vn+2> (98)

vhere EI and p are assumed to be of unit value. The analog computer circuit
requires nine amplifiers per cell in this case because each of the four output
variables must be generated with both signs. (Each cell would require 2
integrators, .3 summers, and 4 inverters.)

Another possibility is to try a higher-order approximation using stag-
gered stations, 1.e., calculate the derivatives at the midpoints between sta-
tions where the function is defined. A central difference approximation of
this sort is the following:

Sy 3 1 -2 - 3h¢ Sy
3x n+é- 5Lh (yn-l Tyn + 2Tyn+, Yn+2> + 50 3x5 n+é (99)

&+ oo U
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This approximetion is seen to have a smaller error term than that for
Eq. (94). Furthermore, it will be seen that less analog computer equipment
is required to implement it.

Using the approximation of Eq. (99), the beam equations are

0n+é = E%K Yney = 2T¥n + 2T¥n4y - yn+%> (100)
1

= = (o ,-270 270 ., - @ 101

Mn ohp \P-# 1 n-g et n+d n+é) (201)

Vn+§ = 5_115<Mn_1 - 2T, + 2TMy,, - Mm_a) (102)
!

Yo = 2= (Vg * 2oy - 2oy + vn‘@ (103)

vhere, as before, unit values are assumed for EI and p. Note that y and M are
calculated at integer stations whereas @ and V are calculated at half-integer
stations.

The analog computer circuit representation of Egs. (100) to (103) re-
quires 5 amplifiers per cell with up to 4 inputs per amplifier. The circuit
for a typical cell is shown in Fig. 9. The signs of amplifier outputs alter-
nate on successive cells.

In spite of the fact that the circuit of Fig. 9 requires 5 amplifiers per
cell compared to 3 amplifiers per cell for the circuit of Fig. 8, the computa-
tions in this report are based on the beam equations as given by Egs. (100)
to (103). The reasons for this choice are (1) the greater accuracy of the
basic difference equation, (2) greater ease and flexibility in applying bound-
ary conditions and forcing functions, and (3) less sensitivity to computer
component errors.

B. BOUNDARY CONDITIONS AND RESULTS

Earlier we saw that the representation of boundary conditions was relatively

straightforward for the case of difference equations of order h®. When one
uses higher-order differences, the problem of applying boundary conditions be-
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comes more complex. Many approaches are possible and the accuracy of the re-
sults is strongly influenced by the method chosen. Much of the remainder of
this report will be concerned with a study of the most promising methods of
applying boundary conditions when using higher-order differences in beam-
vibration problems.

It can be seen that if one uses the basic central difference approxima-
tion of Eq. (99), difficulties arise as one approaches the end of the beam be-
cause the needed stations beyond the end of the beam do not exist physically.
Consequently, one must make assumptions concerning virtual stations or else
one must use unbalanced or one-sided formulas.

1. Pinned Beam.—An end condition which is easy to implement is the
pinned end. In this case one can extend the beam by assuming symmetry and use
these virtual stations in the standard central difference formula that we have
chosen. 0dd symmetry is assumed for the displacement y and bending moment M,
whereas even symmetry is assumed for the slope © and the shear force V. These
assumptions are entirely in keeping with the actual facts for the continuous
case and no error is introduced by this means. Thus any error in the fre-
quency calculations is due to the basic finite difference approximation rather
than the method of applying boundary conditions.

The results of frequency error calculations for a beam pinned at both
ends are shown in Fig. 21. These curves also represent the error inherent in
the basic central difference approximation. They indicate that the calculated
frequency tends to be low with the error decreasing roughly as h* for in-
creasing numbers of cells.

It might be well to note that there 1s another end condition which can
be represented without error. This is the case for which y and M have even
symetry and @ and V have odd symmetry about the end.

2. Built-In Beam.-—The two cases mentioned above are the only ones for
which we can use the basic central difference equation in a straightforward
manner for virtual stations beyond the end of the physical beam. All the other
boundary conditions require a different approach. One possibility is to use
one-sided approximations of order h*. This means that the input data for cal-
culating the spatial derivative at a point do not come from stations placed
symmetrically with respect to that point. Rather, a majority or perhaps all
of the stations are located on one side of the point at which the derivative
is calculated.

FONOo g
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As was the case when we used simple differences (error of order h2?) we
will again end the beam at a helf-integer station. Thus @ and V are normally
calculated at the end, whereas y and M are calculated at the integer station
that is located h/2 inboard. However, since the boundary conditions may
involve the values of y or M at the end of the beam, we must develop suit-
ahle approximations to their values at these points.

In this section we will use difference approximations of order h*, re-
quiring input data only from stations on the actual beam. No symmetry
assumptions are made at the ends. The approximations actually used in the
development are given in Table I.

Now let us consider the case of a beam that is built-in at station
1/2 located at its left end. Using one-sided or central difference approx-
imations as required, we obtain

- -

’oﬂ -5400 6000 -216 0 o | (v

2

o 225 -6075 6075 =225 O N

2

e S 22 -6075 6075 -225 -<++| % (104)

ﬁe‘% Shoon 5 75 6075 5 ¥

L. p LQ . _ L.

But from Table I we note that

¥ 2y, -1 29 e 2°
Y1 g}’2 25 y3+2880h a—qu (105)

2

where the error terms of order h* and h® are zero for the case of a uniform

beam. This can be seen from Eq. (1) or (6) in conjunction with the boundary

conditions y; = O and @; = 0. Also, it follows directly from the series form
2 2

of the solution as given by Eq. (19).

Omitting terms of order h* or higher, we find that

+ e e e et St - A
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o] 4800 0 0 0 94 [va
2
o -6025 6066 -225 O Y3
2

0,9 = L _| 225 6075 6075 -225 °*1 {y.r? 106
;2: 5h00n 5 5 5 5 ya ( )

-~ / L . . /

Thus we find that we can omit y; as & coordinate in our analysis because
of the constraint expressed in Eq. (105). This was also true when simple ap-
proximations of order h® were used, but in that case y, was equal to zero.

FONO O

In a similar manner, using the approximations of Table I and Eq. (99)‘,
wve can write the remaining beam equations for the case of a built-in end.

;) 17 9 -5 1 0 ...

N O R
= L 2 (107)
13 2bh |1 a7 27 -1 0 .. Yoo .

(v, ] [C95 229 225 111 -22 ..J [i)

2

Va 22 1T 9 -5 1 Mo

2= 1 (108)
fvaf 2% |1 21 27 a2 o ..YMef

2
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(109)

Let us apply Eqs. (106) to (109) for the specific case of a 6-cell beam
that 1s built-in at both ends. Only the modes with even symmetry about the

center will be considered. The equations of motion are

(*] )-1-800 0--l Y2
2 =
54000 | 6025 s58u1f |ys
2 -
\
¢ 17 8 |[6
‘ - (ot 27 |{3
M 2bn 4 6] %
“ s
(A -95 207 -114 [,
2
1
ab = 2 ]2 18 4 |
21 ~ ain
\/ 1 27 26|
2 - )
N o
y2 , o e [
A r = — Va
Vs 2dh 1o 1 26 v
“~ g L

2

Letting h = 1 and applying Egs. (80) and (81), we obtain

(5.22099-22) -2.771553

-4 ,29387 (2.85815-)2

(110)

(111)

(112)

(113)

(114)
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glving the characteristic equation

. A - 8.0T914N2 + 3.00462 = 0 (115)

and roots
M,z = 0.625142, 2.77278

which can be normalized to

FONO o

wy = 22.5051

wp = 99.8203

Comparing these results with those for the case where simple differences
were used, one finds that the h* approximation gives somewhat better accuracy
for the first mode and approximately the same results for the higher mode.
This improvement due to using an h* approximation seems to be rather slight.
However, if one looks at the accuracy of a given mode as the number of cells
is increased, the h* approximation converges toward the correct result more
rapidly, as it must, of course, in the limit. See Table II and Fig. 15 for
a summary of the results.

-

3. Free Beam.—Previously we have seen that the representation of a free
end is obtained from that for a built-in end by interchanging the roles of y
and M and also those of © and V. Furthermore, we found. for a continuous beam
that the nonzero mode frequencies are identical for the cases where both ends
are built-in or both ends are free. This is also true when finite difference
methads are used. To illustrate this, let us calculate the mode frequencies
(even symmetry only) of a 6-cell beam that is free at both ends.

The equations of motion are

0, 95 207 -1 [
2
1
@l = — [|-22 18 &4 116
1% = Y2 (116)
o 1 27 26 | s .
[ # N
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Mo 1 21 o7 %
= 1 [ (117)
Ma 2bhlo 1 26 &
2
4
v 4800 ©
{2y - 1 (118)
Vs 5400h {_go25 584
\ 2
’
¥ 1 -17 -8 Va
dyap = 2|21 27|42 (119)

Performing the matrix multiplications for the case where h = 1, we obtaln
from Eq. (81) that

(0.20619-»2)  -0.00031 -0.20588
-2.16868 (5.46TT1-23)  ~3.29903 = 0 (120)
1.25959 -3.6L4483 (2.40524-)2)
giving the characteristic equation
A2(At - 8.0791422 + 3,00462) = 0 (121)

Comparing Eqs. (115) and (121), we see that the nonzero roots are identical
even though the K matrices are quite different.

All computations in this report applicable to either a built-in or free
beam were actually set up considering the built-in case, using equations
similar to (110) to (113).

4. Cantilever Beam.-—One can use the methods developed for obtaining
h4 accuracy in the representation of & built-in end or a free end to write the
equations of motion for a cantilever beam. The minimum number of cells re-
quired for h* accuracy is five. Other methods to be considered later will be
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applicable with fewer cells.

As an example of a typical calculaetion, consider a six-cell cantilever
beam. The equations of motion are

A,

F ¥ &

i

‘\
S
/

ST

SE

4800
-6025
225

0

-225

4950
L

-
-20925

-4950

225

0

6066

-6075

225

112

-24975

51525
3825

6075

225
0

0

-225

4950

20922

-4950

225

-225

6025

-4800
-

&

[ 4

(122)

(123)

(124)
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A 1271 27 1 0 o fi,]
Vs
: 2
1 { 2 \
= —| 0 0 -1 27 27 1 12
2
¥s o o o -1 271 -27 |Va
2
v
Ve, o0 1 5 9 a7 ‘E:

The large numbers in Egs. (122) and (124) result directly from using the
one-sided approximations of order h% as given in part A of Teble I.

Note the similarities in the matrices of Eqs. (122) and (124). Reading
from left to right, beginning with the first row of (122), one sees the neg-
ative of the numbers obtained in reading from right to left bveginning with
the last row of (124). A similar relationship exists between Egs. (123) and
(125), except for sign. This property is common to all finite difference
analyses of the cantilever beam and results from the complementary character
of y and M and also of @ and V.

Setting h = 1, one obtains the characteristic equations for the system:

AC - 29.017U5N8 + 221.62314N8 - 462.526087\*F + 148.71888x2 -1.3T737 = 0
(126)

giving the normalized frequencies

3.51687
22.1688
59.336k4
99.8114

153.687

FESEFE

Note that all except the lowest mode frequency are roughly equal to cor-
responding frequencies for the 6-cell built-in case. An even closer agree-
ment occurs in the percentage error for corresponding cases. In fact, for
large N and comparing the higher modes, one finds essentially identical re-
sults for the built-in and cantilever beams. (See Tables II and III.)
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C. ORTHOGONALITY

We have seen that the use of approximetions of order h2 leads to orthog-
onal modes. Also, one can obtain a lumped physical system composed of linear,
bilateral elements that 1s represented exactly by the equations of motion.
This is no longer true for the n* approximation using one-sided differences
at the boundaries. If one writes the equations of motion, the m matrix is
symmetric but the k matrix is not. [See Eq. (120), for example.] Thus the
system is nonphysical, i.e., a passive system of linear bilatersal elements
cannot be obtained for which the equations are an exact mathemetical repre-
sentation. Also, the modes are not orthogonal, implying that one cannot ob-
tain a coordinate transformation that dlagonalizes the m and k matrices
simultaneously.

L ANV o N o]

To illustrate this point, consider again the 6-cell built-in beam for
the case of even symmetry. For each mode, one can calculate an amplitude
ratio that indicates the relative magnitude of the motions of y» and ya.

Ay _ 5.22099-32 (127) .
Ao 2.71553 7

The results for this case are given by the matrix

1.00000  1.00000
(A] = (128)
1.74028 -0.88897

where each column corresponds to a natural mode and the amplitude of the y»
motion is arbitrarily set equal to unity.

The original mass matrix for this system is

8 2
81 225

m)] = (129)
2 626

225 625
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The deviations from a unit matrix in this case are brought about by the elimina-

tion of y; using the constraint equation

- 2 21
yi = § Y2 55 Ya

The stiffness matrix for the original system is

D
N (k] = [m]K] =
=4.34715 2.88T40
Consider now the coordinate transformation
(y} = [Al(])
The mass matrix in terms of the barred coordinate system is
A )'" 005185 -0.50770

m] = (A [m]{A]
-0.50770 1.85671

and the stiffness matrix 1is

T 1.58347  -3.90%42
(K] = [A]"[k]{A]

[}

-0.19842  14.27502

(130)

(131)

(132)

(133)

(134)

Thus we see that neither the mass nor the stiffness matrix is diagonalized
by the transformation to generalized modal coordinates, and therefore the modes

are not orthogonal. Furthermore, the k matrix is not symmetric.

We have defined orthogonality of modes in terms of a simultaneous diagonaliza-

tion of the mass and stiffness matrices by a coordinate transformation.

It should

be noted, however, that a nonorthogonallity of modes in this sense does not nec-
essarily imply dependence or coupling of modes. In the above case, for example,

the matrix [m]"Y[K] turns out to be diagonal.



VI. THE USE OF SYMMETRY IN REPRESENTING BOUNDARY CONDITIONS

The use of an h* approximation in a straightforward manner has been shown
to require the use of one-sided differences near the ends, whereas central
differences can be used in middle portion. Another approach to the problem
of representing boundary conditions is to assume a virtual or image beam ex-
tending beyond the actual beam and to use values of y, 6, M, and V in this
imaginary beam, as necessary, in the standerd centrel difference equations.
This approach will now be investigated.

A. SYMMETRY ASSUMPTIONS

In establishing the basic approach to the problem, we will again use the
central difference approximation

Sy ~ 1 Yn-1 - 2T¥n + 2T¥n+1 - yn+%> 4 202 By (99)

O peg  2n 640 x5

X
n+3

using staggered stations such that y and M are calculated at integer stations
whereas © and V are calculated at half-integer stations. The beam ends occur
at half-integer stations.

Let us now consider appropriate symmetry assumptions for a cantilever beam,
chosen to illustrate free and built-in end conditions. (See Fig. 10.) First
we note that the assumption of even symmetry in y about the built-in end will
give zero slope at that end, using Eq. (99). (The assumption of odd symmetry
here would not give the proper result.) Successive differentiation of y with
respect to x gives alternating odd and even functions, as shown by the dashed
lines where they deviate from the solid lines. Thus the assumed beam shows
a discontinuity in V (and the slope of M). However, one can see from the basic
approximation given in Eq. (99) that the presence of discontinuities will
amount to an increase in the magnitude of the higher derivatives at this point
and thereby increase the error in the approximation.

To avoid these errors due to discontinuities, we will arbitrarily assume
continuous curves at the boundaries even though these assumptions are not
physically consistent. We are interested in obtaining the best possible
estimates for the derivatives of y within the actual beam, and therefore we

Fovouyg
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meke the most promising assumptions concerning the virtual beam.
The symmetry assumptions that we will use can be summarized as follows:

(1) If the derivative of the function approaches zero as the end of the
actual beam is approached, assume even symmetry about the end.

(2) If the derivative of the function does not approach zero as the end
is approached, assume odd symmetry about the end, possibly with an offset to
avolid discontinuities.

The procedure by which these assumptions are incorporated into the equa-
tions of motion is quite straightforward except for the extrapolation of M
at a built-in end or the similar extrapolation of y at a free end. Taking
the case of the built-in end, a functional form must be assumed for M near
the boundary. Referring to the analytical solution near a built-in end, as
given by Ey. (22) or (49), we find that the magnitude of M varies according
to a linear plus a fourth-order term in x plus other higher-order terms. So
a logical choice of the functional form of M near the boundary might be

M = a8, +a;x % 9.4)(4 (135)

where the last term takes the plus or minus sign depending on whether x is
positive or negative. This assumption results in the equations

My = %—5 (503M; - 310Mp + 39Ms] (136)
and
M., = %2- [T35M, - 542Mz + 39Mg] (137)

where the built-in end occurs at station &.

Another possibility is to assume that M is an offset odd function having
a linear plus cubic variation with x. Thus we might assume that

M = bO + bix + b3x3 (138)
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.18 assumption avoids having discontinuous derivatives at x = O and gives
numerically simpler equations. In this case

M, = 13-[7M1_- 5Mz + Ma] (139)
M, = %[10141 - 8Mo + Ma) (1%0)

Computations were run for many cases, using either Eq. (135) or (138), and
the results were compared. The differences were fairly small and, if anything,
favored the linear plus cubic assumption. All results given 1in this report,
assuming symmetry at the boundaries, are based upon a linear plus cubic varia-
tion of M near a built-in end, i.e., upon Eqs. (139) and (140).

The assumptions concerning the form of y near & built-in end are the
same as we used previously for the h% case. Again we can eliminate y; by
using the equation

= 2 -1
Y1 5 Y2 5 Ya (130)

Of course a similar relation exists for the value of M at the station
nearest a free end.

B. EQUATIONS FOR A BUILT-IN BEAM

1. General Case.—We have seen how we can use symmetry to extrapolate
the variables of the problem beyond the actual limits of the beam. Using these
extrapolated values and the basic central difference approximation of Eq. (99),
we can write general equations for a built-in beam similar to those given by
h4 approximation in Egs. (106) to (109). They are

(o B ]

og L7759 0 0 eoo| [y2)
eﬂ -6025 6066 -225 0 ¥a|
2
1 } 1 225 -6075 6075 =225 ...] € ¥a} (141)
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Me} 27 27 -1 0 og
2
L 1 ; < >
= 2|1 -27 271 21 ...| % 142)
%3 2bn | T . § (
k. ) K . i L' )
'V K98 12)4 "26 0 oo-o
2
v 76 20
A = —;L—— (1)"’3)
v Tehl 3 .81 81 -3 ...
L. -. ¢ -y
7 N B T . N
¥ -1 27 =27 1 0 ... |vy
2
¥ , o1 21 et A
1y -+ 12 (144)
¥4l 2%h g o .1 27 -27 ... Vs
. .J _‘ : -d L' s

A comparison of the above equations with those for the h* approximation
as given by Eas. (106) to (109) shows considerable similarity. It should be
noted, however, that the use of symmetry at the boundary never requires more
than four inputs per amplifier in the analog computer circuit, whereas the h*
approximation requires up to five inputs per amplifier.

2. The 6-Cell Case.—As an example of a mode calculation for a specific
case, consider again the modes with even symmetry about the center for a 6-
cell beam built-in at both ends. Thé equations of motion (using symmetry
assumptions at the boundaries) are
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L7759 Y2
A (145)

mpf mp!

M, 26 -1 93_
2
Mo = = |27 27 (246)
24h
2
M 1 -26
r\ nl -
vyl -98 124 26| M
2 .
1
v = = {-Th 76 2 147)
Vet~ 7 e (
Vs | 3 81 18
\ & L —
”
\ v
Yo 1 [—1 27 -23 il
p = — ' (148)
/ Vi
Lz
P

Setting h = 1 and performing the matrix multiplications, one obtains

(8.04779-22)  -4.39000

]
O

(149)
-4.39275 (2.9145L4 -72)

glving the characteristic equation

A - 10.962330N2 + 4.17146 = 0O (150)

oo o
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The roots are

M2 = 0.62828, 3.25078

and the normalized roots are

22.6182

wy

117.028

&

Recalling that the corresponding normalized frequencies for the con-
tinuous beam are

B1

22.37133

B2 120.903

we see that the above results give a somewhat larger error for the first mode
than does the h* approximation, but the error in the higher mode is much smaller.

An alternate method can be used, particularly with the use of a digital
computer, to set up the equations of motion and to solve them. This method,
which indicates more clearly the symmetry assumptions in its formulation, is
given in Appendix A.

5. Results.—The results of calculations for built-in and cantilever beams,
using symmetry assumptions at the boundariez, are summarized in Tables II and
III and in Figs. 17 and 18.

Comparing these results with those for the h% approximation, we note that
for a practical range of N (say 6 to 16) the use of symmetry gives lower ac-
curacy on the low frequency modes but better accuracy on the higher modes. For
example, consider the case of an 8-cell cantilever beam having a total of
seven modes. Using symmetry at the boundaries, the first four modes have a
frequency error well within 1% and even the sixth mode has an error of only 10%,
approximately. By contrast, the use of h* approximations at the boundaries
gives better accuracy for the first three modes but the fourth mode has an
error of nearly 5% and the sixth mode has an error of approximately 20%.
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C. ORTHOGONALITY

It turns out when boundary conditions are imposed using symmetry that
the resulting modes of vibration are nearly, but not exactly, orthogonal.
This means that this approach also results in a nonphysical system in the
sense that a lumped model cannot be built of linear bilateral elements.

To compare the orthogonality properties with those for the h* approxi-
mation, let us consider again the example of the 6-cell, built-in beam.
The mass matrix is again
e
81 225
(129)

(m]

2 g6

225 625
-

The stiffness matrix is

(k] = [m][K] (151)

=L .47131 2.95823

The amplitude ratios are calculated from

e | SO0 (152)
A, k.39000 :

Yielding the modal matrix

1.00000  1.00000
(A] = (153)
1.T4329  -0.57399

In the modal coordinate system the mass matrix is

oo o

e
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T 4L.06232 0.03676
(m] = [A]"[m][A] = (154)
0.03676  1.38957

The stiffness matrix is

T 1.60356 0.38348
(K] = [A]l'[k][A] = (155)
0.01451  1h4.68446

Thus neither matrix is diagonalized by the transformation, but the result
is considerably closer than was the case for the h%* approximation, as can be
seen from Eqs. (13%3) and (134).



o e A

46

VII. THE PASSIVE CIRCUIT METHOD

We have seen in the case of the simple approximation of order h2 that an
electrical circuit exists which the difference equations describe exactly.
However, when one goes to higher-order differences and :.ses the methods we
have described for establishing the boundary conditions, one finds that the
resulting equations are nonphysical, i.e., no passive linear circuit analogy
exists.

It can be shown that the nonphysical character of the higher-order methods
discussed thus far i1s due to the boundary-condition representation rather than
the basic difference approximation. 1In this section a passive circuit analogy
will be obtained for the basic higher-order approximations of Egs. (100) to
(103). By imposing boundary conditions on this circuit and writing the cor-
responding equations, one can obtain a set of mutually orthogonal modes.

A. PASSIVE CIRCUIT ANALOGY

We have been using the following finite difference approximations to the
beam equations.

= 1
gn.'.& - m (yn..l = 27yn + 27}’n+1 = yn+2) (loo)

M= Ei? <°n-§ - 27°n-§ + 27°n+§ - em;) (101)
Vn+£. = E%H (?n-l - M, 2™, - Mn+é> (102)

1
Yo = ohn 'vn-g * 27vn-é - 27vn+é.+ Vn+é> (203)

Setting h = 1, end representing generalized velocities by volteges and gen-
eralized forces by currents, one can show that the passive circuit of Fig. 11
is described by these equations. Note that three transformers, one inductor,
and one capacitor are required per cell.

The rather large transformer requirement of Fig. 11 compared with the h2
approximation of Fig. 3(b) makes it impractical to use this passive circuit

+oONo o
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directly. Instead we can write the circult equations and solve them using a
differential analyzer or a digital computer. ‘The equipment requirements in

this case are almost the same as for the other higher-order methods but are

actually slightly less due to the details of boundary representation.

B. THE BUILT-IN BEAM

1. Symmetry Assumptions.—To obtain a proper representation of a bullt-
in end, it is convenient to make certain symmetry assumptions consistent
with the given boundary conditions. We will assume that the deflection curve
has even symmetry about the end and zero slope at the bourdary. Thus y and
M are even functions of x, while © and V are odd functions of x, as shown
by the dashed lines of Fig. 10.

The circuit that has been used to represent a built-in end is shown in
Fig. 12. The beam end is at the center of the diagram (station &) with the
virtual beam on the left and the actual beam on the right. The autotrans-
former at the bottom of the figure represents the constraint relating y;
and Y2

2. Constraint Equation.-—It can be shown for & uniform beam that

> 1 he 3%
yn+g - ig(:lyn-l O, Wy - yn:é) * 512 §§§ ek (156)
2

So if we assume that y has even symmetry about the built-in end at station %
and also set yé equal to zero, we obtain the approximate equality

jod

Y1 % Yz (157)

This is used as the constraint equation in the passive circuit approach.

It can be seen from Fig. 12 that the autotransformer representing the con-
straint equation causes a certaln relationship to exist between voltages and
also between currents. In mechanical terms, a constraint equation relating
coordinates also implies forces of corstraint to be exerted on the system in
such a way that no work is done. These forces of constraint have been ignored
in the previous two approaches to the problem and this resulted in a lack of
symmetry in the stiffness matrices.



To calculate the effect of these forces of constraint, consider a beam
described by the matrix equation

(m](¥} = ([DI(V) (158)

Now suppose a constraint is imposed as described by

i = (C)y) (159)

where the summation 1s over all y except y1. (The parentheses denote a row
matrix.) Let us include the constraint forces in the analysis and also separate
the y; equation from the others. Then we obtain

(D1)(V) + Fy (160)

m ¥y

(m]{¥)

DIV} + (F) (161)

where the F are constraint forces acting on the beam. Note that Eq. (161) does
not contein ¥; and the D matrix does not contain a D3 row.

Now maultiply (160) by y; and premultiply (161) by [y]T. Adding, we obtain
yim¥s + (¥ I = v ) + #HTRIV) + Faya + 3)7F) (162)
Since the constraint does no work, we can write
Faya + (NT(F) = 0 (163)

and the last two terms of (162) drop out. Finally, substituting for y, from
Eq. (159), dividing out [y}T, and rearranging, we obtain

FONNO O
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m(C)(1(C)T + mly = (DT + DIV (164)

This gives the equations of motion with y, omitted and constraint forces in-
cluded. For example, in the present case with a simple constraint given by
Eq. (157), the effective mass at yp is 82/81 times its value before the con-
straint was applied. More complicated constraints will result in inertial
coupling, but the effective inertia matrix will always be symmetric.

3, General Case.—The complete equations of motion for a built-in beam

can be written now using the passive circuit method. They are
6] a7 -9 0 0 ... (yd
2
og 242 243 -9 0 I3
{3 = 51? 4 (165)
o ool g a3 243 -9 ... |va
2 . . .
Lo‘ L-.o . B L- /
’M;_ 26 "l 0 0 e ’Gﬂ
2
Mo 27 27 -1 0 6|
! = L 2| (166)
24h e
M 1 =27 27 =1 .. %
* _0 . L.‘
'V; r-26 27 -1 0
2
\'/ 1 =27 27 -1
{3 - L (267)
\fd 0 1 27 27
2 . .
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) B 1. .
¥a -82 2214 -2214 82 Vs

b= == 12l e
Ve 1966n | o -82 2214 2214 ... Vg
. .4 N ) ’ _J “ ’ #

The amount of analog computer equipment needed for the pessive circuit
method is slightly less than for either of the other higher-order methods.
There are two reasons for this. First, the value of V at a built-in end (or
of © at a free end) need not be calculated. Second, the signs are optimum in
that no extra amplifiers are required for inversion at any point.

The equations of motion for stations near a free end can be obtained most
easily from the above equations by exchanging the roles of y and M and also
© and V. Of course they could also be obtalned directly from the passive cir-
cuilt, remembering the constraint equation relating the values of M at the last
two stations.

4. The 6-Cell Case.—Again let us consider the even symmetry modes of
a 6-cell beam built-in at both ends. Using the passive circuit approach, the
equations of motion are

2 = _1_ (169)
os 216h | ono 23| |y
M 26 -1 .
1 %2
= = |21 27|] 2| (170)
, 24h o5
M 1 26 | (3
2 N [26 27 -1 | (M
A 1 27 26] |Ma
: L J

oo O
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¥a 1953 -217 V%
P Va (172)
¥a 19%68h |82 213 2
Setting h = 1, we can solve for the eigenvalues from
(8.47527-23)  -4.54772
= 0 (173)
-4.60386 (2.99140-32)
or
A - 11.46667A2 + 4.41583 = O (174 )

The normalized roots are

22.7395

wy

119.765

&

In this case the first mode frequency is 1.6% high and the second mode fre-
quency is 0.94% low.

C. RESULTS

The results of mode frequency calculations for a uniform beam using the
passive circuit method are summarized in Tables II and III and in Figs. 19 and

20.

Comparing these results with those obtained previously, using other methods,
we note that the passive circult method gives very good over-all accuracy for
cases where the number of cells is 9 or more. On the other hand, the symmetry
method appears to give generally better results for smaller values of N. Of
course, the h* method is still best for accuracies of the order of 0.25% or

better.
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One way of comparing the various methods is to obtain an approximate number
of cells required per wavelength to obtain a given accuracy. For 1% error,
the ordinary h? approximation requires 12 cells per wavelength. In contrast,
the h* approximation requires 6-1/2 cells per wavelength, the symmetry meth-
od requires 5 cells per wavelength, and the passive circuit method requires
4-1/2 cells per wavelength.

D. ORTHOGONALITY

In contrast with the higher-order methods considered previously, the pas-
sive circuit method produces orthogonal modes. The orthogonality property is
a result of the symmetry of the original m and k matrices.

We can illustrate this point by referring again to the 6-cell case. From

Eq. (173) we see that the amplitude ratios for the two modes can be calculated
using

A2 8.4T7527-72
Ay b.54772 (175)

The modal matrix is

1.00000  1.00000
[A] = (176)
1.77590  -0.57005

The original mass matrix is

B
m] = |81 (177)
o 1

The corresponding stiffness matrix is

8.57990 -u4.60386
(k] = (178)
-4.60386 2.99140

+£OoON0 O
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After the transformation

(¥} = [AlY) (132)

the resulting mass and stiffness matrices are

4.,16616 0
] = (A[m]{A] = (179)
0 1.33730
1.66223% 0]
€] = (A)T[k][A] = (280)
0 14.80080

The diagonal nature of these matrices implies orthogonality of modes, and also
that the motion of each of the modal coordinates is independent of the others.

It should be noted in passing that the matrix
-1
2] = [A] [K][A] (181)

is diagonal for all three methods and the numbers along the main diagonal are
the squares of the mode frequencies.lo This does not imply orthogonality,
however, as we heve defined it.
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VIII. SOURCES OF ERROR

In this section we will consider the principal sources of error in the
methods that have been suggested for the solution of beam vibration problems.
These errors are (1) finite difference errors due to the basic difference approx-
imation; (2) finite difference errors in the representation of boundary con-

ditions, and (3) component errors.

The error curves that have been presented

so far represent a combination of error sources (1) and (2) above for various

specific cases. Now we will consider them with somewhat more generality.

A. FINITE DIFFERENCE ERRORS

1. The h2 Approximation.

We have seen previously for a pinned beam that,

when proper symmetry assumptions are mede, there is no additional error due to

the method of representing boundary conditions and so the entire computed
error is due to the basic finite difference approximation.

a uniform beam pinned at each end at an integer station.

Recall agaein the basic h? approximation

éx v -yn+yn+1_112_aa
ox n+k h 24 3x3 ned

Repeated spplication of Eq. (60) yields

£y
%2

Yoy = % * Ypuy _h2 oty
h° 12 x*
n

1]

n

Similarly, one can obtain

oy

4
Ox n

which is the result of

Yn-g = “¥n-g + 6¥n - W¥ney *+ Ynep B2 3O
h 6 x°

L[4

applying Eq. (60) four times in sequence.

So consider now

(60)

(65)

(182)

ANl o]
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We will again consider the equation for the continuous bveam in simplified
form.

a_‘-x+.a_21=0 (6)

As we have seen previously, the solution for the continuous pinned beam is of
the form

y = Z Yy sindai X (G1 cos Bit + Hy sin Bit) (183)
i
where
B = 13 (1=1,2,3, ...) (55)

For the case of the ith mode, we can substitute Eqs. (182) and (183) into (6),
obtaining

|

1 - - h? 3 -
n* Qn-z l+yn-l + 6yn uyn-H. + yn+2> + g‘ Bivn - sziyn =0
or

1 2
"y Yn-z = Wnoy * OV - W¥pe, * yn+2) = Fm(1- 131- Bi) (184)

Now Ehe left-hand side of Eq. (184) is of the same form as the approximation
to 3_% used in the finite difference solution. Therefore, the corresponding
Bx n

finite difference equation 1is

1]1'—4 Ynez = W¥noy * 6¥q - Bopey ¥ yn+9 = ‘”iyn (185)
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vhere wy 1s the finite difference eigenvelue corresponding to B;. 8o the right
sides of Eqs. (184) and (185) can be equated if sinusoidal mode shapes are
assumed in each case. Finally, noting that

h = 4 86
L (286)
we obtain
- 4 1/1in\2
wﬁ-(in) E-E(N—> +..] D
9
6
or b
2
ay = (in) [L - L(;_’)a + ..] (187)
12

where 1 is the mode number. i
2. The tf_ Approximation.—A similar approach can be used to compute the .

frequency error for a pinned beam using higher-order differences. The basic
approximation is

¥ ;_}._y - 2Ty, + 2Ty _y)+211_531 (99)
dx n+d 24n \\ Bt n e JPTN n+d

Using successive repetitions of Eq. (99), we obtain

2
oyl z 1 (;rn_a- Sky,_,+T83y,_, ~1460y,+ 783yn+1-shyn+2+yn+9+ e Py

a2, (en)® 320 38|
(188)
and .
3* ~ 1 ( . . > 3nt 38 :
D — Xy Yy + (189)
|,  (aun)* n-e nte/ 160 a7, i
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Proceeding in a manner similar to that for the h? approximation, we ob-
tain

2 ht 4
- A%

or

o = (1) [1 - 3%5(1«1_’()4 + ] (190)

Thus we see that the basic finlte difference approximation tends to give
frequencies that are too low. The first error term in Eq. (190) gives an
accurate estimate of the error only for small 1/N ratios and more terms are
needed for most practical cases. The actual error curves are plotted in Fig.
21 for the h* approximation.

3, Maximum Errors.—From the tabulated results of the calculations of
mode frequencies, it is seen that, as the i/N ratio increases, the error also
increases. In the limit as 1/N approaches unity, the error 1s independent
of the boundary conditions and depends only on the basic approximation. This
limiting value of the error could be obtained by evaluating the complete
series indicated in Eq. (187) or (190) for i/N = 1. A simpler way to obtain
this result is to note that as 1/N approaches unity the motion at adjacent
stations is equal in amplitude but opposite in sign. Knowing this, one can
calculate the frequency directly.

For example, using the h® approximation and assuming h = 1, we find that

¥, + 16y, = 0 (191)

ylelding the frequency
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The corresponding frequency for the continuous beam is the same as for a pinned
beam of unit length vibrating in its fundemental mode, namely, n2. So the
maximum error fa the h® espproximation is

= ﬂa-u z= 5
€nax = 59.472% (192)

Performing a similar calculation for the h* case, we obtain

¥y =
Yo * (5) In o (193)
or

A = )i.g

9

giving a maximum error

2

= 9n-h9 _
€ax = o2 = L4.836% (194)

B. BOUNDARY-CONDITION ERRORS

We have seen that an anelysis of uniform pinned beams with various numbers
of cells gives directly the finite difference error due to the baslic central
difference approximation. PFurthermore, we note that the eigenvalues of the
pinned case alternate with the eigenvalues of either the cantilever or built-
in case. Consequently, if the method of applying boundary conditions intro-
duced no additional error, one would expect the error curves for the cantilever
or built-in beam to run between and roughly parallel to the error curves for
the pinned beam. Instead, one finds that all the boundary-condition methods
considered here result in raising the natural frequencies. This causes a gen-
eral improvement in accuracy for 1/N values greater than about 0.3 for the
symmetry and passive circuit approximations. For the h* method the accuracy
is improved for all i/N.

FONO Y
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For the lower modes and large N, the error for the three built-in or
cantilever cases mentioned above exceeds the error for the corresponding pinned
case because the boundary-condition errors are of lower order in h than the
basic central difference errors, and ultimately must predominate. For example,
in the equations for a built-in beam using the simple "h2" approximation, we
find the expression

[+] = 2’3 1
g o (195)

([See Eq. (82).] The error in this case is actually of order h, as can be ascer-
tained by the Taylor expansion method.

Similarly, the passive circuit and symmetry methods of approximating a built-

in end use the expression

1
M = = (260, - 6 196)
o2 \L 2 3) (

vhich has & first error term of order h. On the other hand, each equation used
in the h% approximation is truly of order h%, and therefore the boundary-
condition errors do not tend to dominate for large N.

A study of the error curves presented in Figs. 16 and 21 1¥ads one to the
conclusion that the first error term alone does not give a reliable estimate
of the actual errors encountered. The i/N ratio must be the order of 0.1 or
less before the first error term clearly predominates and by this time roundoff
or component errors mask the desired truncation error.

To illustrate this point, it is of interest to calculate the rate at
vhich the actual truncation errors decrease with increasing N as N approaches
16, i.e., at the right-hand edge of the error diagram. Rough calculations
indicate that the h? and symmetry methods have an error that is decreasing
as hl*®, yhile the error for the passive circuit method is decreasing as h3°°
and that for the h* method is decreasing as h*:7 for increasing N.

The conclusion from the preceding analysis is that the method of repre-
senting boundary conditions should be chosen on the basis of the require-
ments of the problem and actual error curves, rather than assuming that an
h* approximation is necessarily more accurate than an h® or lower approxima-
tion over the practical range of N. Our results show that so-called higher-
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order methods are generally superior to simpler approximation methods. How-
ever, the choice between the various methods of representing boundary condi-
tions should be made on the basis of the problem at hand.

C. COMPONENT ERRORS

In this section we will consider the sensitivity of the calculated roots
or frequencies to small shifte or inaccuracies of the component values. This
will be accomplished by perturbing one of the matrix elements and calculating
the resulting frequency shift.

Suppose we write the characteristic equation in the form

£FON0 O

S('ﬂ: biJ) = 0 (197)

where the eigenvalue, g = xz, is the square of the frequency (rad/sec) of one
of the modes and by4 1s the matrix element that is to be perturbed. For
small deviations about the reference values 7, bijo we can expand in the
series

3s Js
S(n, by3) = S(ng, bys.) + =| an + Abyy + eos (198)
gt 02 1o a"'Io b 3biJo 1
where
no= m, + 4

biJ = biJo + Abid

From Eqs. (197) end (198) we obtain an expreééion for the shift in the root.
S

i
Aﬂ =z - Ab (199)

OMjo

To illustrate this method, let us make an error-sensitivity computation
for a 6-cell beam that is built-in at both ends using symmetry assumptions at



FONO U

61

the ends and assuming even symmetry about the center. We have seen that the
equations of motion can be written in the form

) + Kily) = O (79)

where

(K] = - [Bs](Ba][B2](B:1] (80)

For the case we are considering, the characteristic equation is of the form

(Kya2-9) Kio
=0
Kza (Ky1-n)
or
8 = 12 - (Kiy + Kez2)n + (KyiKez ~ KaoKey) = O (200)

Let us suppose that an element in the B; matrix is to be varied. We can write

(K] = - [T](B1] (201)

where

(T] = [Ba)(B3](B2] (202)

Consider now the case at hand where
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115 9 .

[Ba] = ===

and evaluate the sensitivity to a perturbation of bz;. Evaluation of Ay ac-
cording to Eq. (199), assuming h = 1, gives

A‘l]l = 0.157010 Abay

Az = 4.22168 Absy

FONO U

for the first and second modes, respectively. In this case the actual roots
are

0.394741

1

10.5676 .

N2

So the fractional changes in the roots are

- - oo.uuz791 SRz2a
M1 bay
A2 _ | o.bus7al Abaa
yt-! 21

This implies that a 1% increase in the magnitude of bp; will cause a 0.222%
decrease in the first mode frequency and a 0.223% decrease in the second mode

frequency.

It has been pointed out by Clymer,8 Fiaher,9 and others that, in genersal,
the repeated use of finite difference approximations to the first spatial
derivative will result in less component error sensitivity than using approx-
imations to the second or fourth derivatives. To check this point, let us
calculate the error sensitivity for the same problem using approximations to
the second derivative. Splitting the matrix multiplication differently, we
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will let
(K] = - [T](B] (203)
where
(T] = [B4][B3] (204)
(B] = [B2](B1] (205)

In this case, for h = 1, we find that

58.1271 -2.5037
(B] = [-130.2083 70.3125| x 10”7
72.0812 -67.8088

s

and

-1981  L115  -213h
(7] =
152 -2182 2030

Again we will calculate the error sensitivity for bz;. Performing the numerical
computations as indicated in the equation, we obtain

Ay = -77.6587 Abz,

Az = -4037.34 Abo;
corresponding to

A . o.256163 AR



An2 . o.ug7u60 Abaa
N2 1)21

So in this case a 1% increase in the magnitude of bp; will cause a 0.128% in-
crease in the first mode frequency and a 0.249% increase in the second mode
frequency.

Comparing these results with those for the approximation to the first
derivative, we do not have a very significant difference in sensitivity. 1In
fact, neither case would be particularly troublesome from the standpoint of
component error sensitivity. Further calculations of error sensitivities for
other matrix elements show comparable results.

This same case, using approximations to the first derivative, was checked
for error sensitivity on an actual analog computer with results in accordance
with the above calculations. Percentage frequency shifts were generally less
than half the percentage component change.

As the number of cells N is increased, the differences in error sensitivity
between the first derivative and second derivative approximations should be-
come more apparent. In any case the sensitivity to component errors will in-
crease with N and large sensitivities should be noticed first in the second
derivative approximation.

As Fisher has pointed out, certain elements in the matrix will show con-
siderably more error sensitivity than others. In general the large terms are
more sensitive to error. For our basic higher-order approximation

&y ¥ 1 . .
dx n+} m(”n-x 2Ty * 2T, yn'6'2> (99)

we would expect a larger sensitivity to errors in the coefficients +27 than
in the coefficients 11 or even the coefficient 2Lk. The coefficlents 1l act as
correction or trimming terms and do not need to be held to the same percentage
accuracy.

The above discussion of error sensitivity applies to digital computers
vhen considering roundoff errors. The magnitude of the roundoff error is, of

FON0 O
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course, dependent upon the number of digits used in the computations and the
cell number N. It is also dependent upon the differencing scheme used and
the details of the digital program. For the methods used with IBM 704 com-
puter in calculating frequencies for the varicus cases given in this report,
roundoff errors of the order of 0.0i% were first noticed with i/N ratios of
approximately 0.1 or less on cantilever beam computations. Because the use
of symmetry effectively halved the number of degrees of freedom, the calcula-
tions for the built-in beam did not suffer appreciably from roundoff errors.

For reasons of roundoff error and the general complexity of computation,
N = 16 seems to be a rough upper limit on the number of cells to be used in
analog or digital computations. This detracts somewhat from the utility of
the h* method of representing boundary conditions because it is at large N
that this method is particularly advantageous from the standpoint of finite
difference or truncation errors. On the other hand, it accentuates the ad-

vantage of higher-order difference methods in general as compared to the simpler

h2 methods, particularly in the computation of the higher frequency modes.
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IX. CONCLUSIONS

The principal conclusions gained from the investigations reported here
are as follows.

1.

The use of higher-order differences in the solution of beam-vibration
problems on the analog computer improves accuracy with essentially the
same amount of equipment as would be required for simpler difference
methods. In the digital formulation of the corresponding eigenvalue
problem, & similar improvement in accuracy is obtained with essentially
the same computer effort, as measured by matrix sizes and numbers of
operations, The improved accuracy is obtained by using more inputs

per amplifier in the analog circuit and more nonzero elements per matrix
in the digital computations.

The principal difficulty in the formulation of beam-vibration problems
using higher-order differences lies 1n the proper representation of
boundary conditions. This difficulty arises from the need for obtain-
ing input data from more stations for each differencing operation to
obtain greater accuracy then in the simpler approximations, As the
boundary is approached, some cf these stations needed for the basic
higher-order central difference approximation lie beyond the end of the
beam, and so other approximations or assumptions must be used. Three
methods are presented for the representation of built-in or free ends,
namely, (1) the use of one-sided differences of order h%, (2) the use
of symmetry assumptions at the boundary, and (3) the passive circuit
method.

Each method has its areas of special utility, as seen from the re-
sults of calculations for uniform beams. The h* method is best suited
to relatively small 1/N ratios, corresponding to accuracies of 0.25% or
better., The symmetry method is most advantageous in obtaining moderate-
ly good accuracies (the order of 1%) for all but the highest modes with
a minimum of equipment, particularly for a cell number N < 9. The pas-
sive circuit method has quite good accuracy in general, and in particu-
lar for the higher modes (large i/N ratios) where N > 9,

The discussion of errors centered on {1} truncation errors from the
basic central difference approximation and also from the boundary-
condition representation and (2) component and roundoff errors. Error
considerations as well as the ease of representing boundaries were im-
portant in choosing to approximate the first spatial derivative rather
than the second or higher derivatives and also in the use of staggered
stations in the calculation of successive derivatives,

+F OO O
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The methods proposed in this report are relatively insensitive
to component or roundoff errors for N « 16. Larger values of N are
not recommended because of the general computational complexity and
also the increasing size of component or roundoff errors.

k, 'The h* and symmetry methods are nonphysical in the sense that no system
composed of linear bilateral elements can be found that is represented
exactly by the equations of motion. This is a result of the fact that
the stiffness matrices are not symmetric in these cases. On the other
hand, the h® and the passive circuit methods result in physically
realizable systems. The latter two methods have the further advantage
that the resulting modes are orthogonal, i.e., a transformation to
modal coordinates simultaneously diagonalizes the mass and stiffness
matrices,

University of Michigan,
Ann Arbor, Mich., October 1961.



APPENDIX A

ALTERNATE MATRIX FORMULATION

The matrix formulation of the difference equations that we have used thus
far involves the solution of Eq. (8l1) for its eigenvalues, the matrix K being
obtained after three matrix multiplications. Any assumptions with regerd to
boundary conditions or constraints are put into the individual matrices before
the matrix multiplications are performed. An alternate scheme, particularly
adapted to digital computers, enables one to obtain the same K matrix without
losing sight of the subsidiary assumptions.

As an example of the alternate method, consider again the problem of the
6-cell, built-in beam using symmetry assumptions at the ends. Equations (145)
to (148) could be obtained from the following eight equations:

Yo
o 1 27 27 -1 0
I 3 . ﬂ—lh[ e ] v (A1)
05 0 1 -27 27 -1 Ya
[ 2 .
Yo 50 -9
Y1 50 -9
{ya) = L |25 o {Va (A2)
Ya 251 o 25 W
& 0 225
r 3
°-3
%
M, 1 27 27 -1 0 0] |e
Mop = 2o 1 -271 271 -1 o] |2 (43)
2Lh So- ¢
Ma 0 0 1 -27 27 - 3
oz
2
. 9
Fg.l i 2 j
o Z -1 0] ;
oé ° 2 e
1 0
= AL
403 y 0 1 gg (A)
s o of |
L 0 -1
2 - L
%
| 2]
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! l1-2727-100’}:0
Val, . 0 1 -27 27 -1 0 1 (45)
v Wl o5 1oz 21 | M
2 Ma
2 [10 -8 1]
My To=3 1y
Ml _ 1|3 o ol f
M2f 3|0 30 {M2 (46)
Ma 0 0 3
M, L0 O 3_
(v,]
v2
Yo L [-1 27 -27 1 o] 2
= - Vi? (A7)
Vs, M|y o2 o2 *Vi
Vg
52-
A
]
v
1 1 0 O
V2 o1 ol %
Vap = |0 o 1)V (A8)
Y, o0 of1
Z oo -1f | %
2
\ 2J

These equetions explicitly separate the basic difference equations and the
boundary conditions,
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APPENDIX B
TAPERED CANTILEVER BEAM
The analysis that heas been made in the main body of the report has been
concerned. with the lateral vibrations of uniform beams. In this appendix we

will indicate the sort of results to be expected when higher-order methods are
applied to nonuniform beams.

ANALYTICAL SOLUTION

The case of a beam of unit width and with uniform mass per unit volume and
a linearly decreasing depth has been analyzed by Siddall and Isakson.ll Theoret-
ical eigenvalues were obtained for the case where the depth at the free end is

one-fifth that at the built-in end. (See Fig. 22,) For a beam of unit length,
the linear density is

p = 2(1 - 0.8%) (B1)
and the bending stiffness is
EI = %(1 - 0.8x)° (B2)

The cantilever beam is built-in at x = O.

Theoretical frequencies (rad/sec) for this case are

- By = 2.47829
B = 9.08902
Ba = 21.2953

FINITE DIFFERENCE FORMULATION

The same tapered beam was studied using the finite difference approach.
In a manner similar to that for the uniform beam, the natural frequencies were

oo o
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calculated using various boundary-condition assumptions,

For a nonuniform beam, new assumptions must be made concerning the method
of lumping the mass and stiffness. Again we assume uniform cell size (hsl) and
end the beam at half-integer stations. The total mass of each cell is lumped
at its center. Similarly, the total effective bending stiffness of each cell
(i.e., between consecutive half-stations) is lumped at its center,

Specificelly, the mass lumped at the nth station is (see Fig. 22)

n+4
m, = fp(x)dx (B3)

n-i
2

Using higher-order differences, we obtain the acceleration at the nth station
from

. l
Vo = (= Vpoa + 2TV,_3 - 27V, + V,,3) (B4)
n §EE;§ n g n % nfé nﬁg

The lumped bending stiffness is

n+3
1 dx

(D, EI(%) (85)

n-d

2

resulting in the bending moment equation
- (EDntg . - 276, +276..4 - 6, .a) (B6)
My oih n-g n-é nfé ntg

The slope and shear force equations remain unaltered from the case of a uniform
beam,
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In general, the boundary conditions are imposed in the same manner as for
a uniform beam. An exception occurs in the passive circuit case where the ef-
fective mass my near the built-in end includes the reflected value (as seen
from station 2) of the actual mass m;., A similar reflection of bending stiff-
ness occurs near a free end,

Also, it should be noted that the constraint equation

= 2y, . 1.
yi o= ¥z - 5Vs (130)

is of order h* for the case of & nonuniform beam instead of order h® as was the
case for the uniform beam.

RESULTS
Error curves for the tapered beam are shown in Figs. 23-26. Comparing

these results with those for the uniform beam, one finds the various methods
retain many of their characteristics in spite of a general reduction of accura-

cy. The h2 method shows good accuracy for the fundamental mode while the higher-

order methods (the symmetry and passive circuit methods, in particular) have
better accuracy on the higher modes. The h* method suffers the largest loss
of accuracy due the nonuniform mass and stiffness distributions.

The general lowering of mode frequencies compared to the uniform beam is
probably due primarily to the mass lumping method which results in a slight
positive shift in the center of mass location compared to the continuous beam.
This is because the mass is lumped at the center of the cell whereas the actual
center of mass for the cell is located slightly inboard of the center, i.e.,
toward the built-in end. Similarly, the compliance (inverse stiffness) for a
cell is lumped at the center and is thus somewhat inboard of its compliance
centroid. This also results in a lowering of the natural frequencies.

OO U
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TABLE I

ONE-SIDED APPROXIMATIONS OF ORDER h*
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TABLE II

MODE FREQUENCIES OF A BUILT-IN OR FREE UNIFORM BEAM¥*

Approximation Method

N Mode Continuous h2 ht Symmetry ﬁ::gi;:
31 22,373 '2;::1?? 222223% 331553”
»oo1 22.373 2;:2? 2;:;3&532% 2;:1?22%
Coe aep i arn end
5 1 22.375 2;22? 22;(2? 222#? 2232?
s 2 61.673 g jé?,l” '§i:8§$" 6(1):2308% 6;:2853?
I R Y A L Ny
6 1 22.373 agzgi? 2;):;(9)? 22:22? 2;:"612?
6 2 61.673 '53:2(1)? -53:2? 62:6?3??% 62:2?
R o e S -
I S I = sy .

*The percentages refer to the error in frequency as compared to the continuous
beam.
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TABLE II (Continued)

i

Approximation Method

Mode Continuous 2 4 Passive
B n Symmetry Circuit
0.858% 0.340% 0.912% 1.064%
1 22.375 22,565 22,449 22.577 22,611
- 3,707% - 0.751% 0.460% 2.006%
2 61.673 59.387 61.210 61.957 62.910
-12.333% - 9.992% - 1.472% 0.711%
5 120.90 105,99 108.82 119.12 121.76
" 199.86 ~2L4.307% -19.494¢ - 6.915% - 5.h244
) 151.28 160.90 186.04 189,02
5 208.56 ~38.354% -23.617% -18.412% -18.000%
) 184,05 228.05 243,59 2L, 82
0.697% 0.192% 0.764% 0.729%
1 22.513 22,529 22,416 22,544 22.536
- 2.627% 0.091% 0.522% 1.493%
2 61.673 60.053 61.729 61.995 62.594
- 8.98%% - L.806% - 0.695% 1.092%
5 120.50 110.04 115.09 120.06 122,22
-18.063% -14,140% - 3.823% - 2,086%
4 199.86 163,76 171.60 192,22 195.69
298.56 -29.163% -20.117% -10.480% - 9.489%
> -3 211.49 238.50 267.27 270.23
6 416.99 ~h1.411% -24,933% -21.823% -21.569%
* 2hl, 31 313.02 325.99 327405




TABLE II (Continued)

Approximation Method

N  Mode Continuous he " Symetry T;::: t\ir:
9 1 22.373 222?3? 22%37,"’ 281233"’ 22:1’33*
9 2 61.673 o e o oar? 6;:;26?
9 3 120.90 R A N o
o b w8 e BT b e
9 5 298.56 (e o S S5
95 6 416.99 L r B R
9 7 555.17 v ol v e I S v L
10 1 22,373 221371;% 221223” 28:232" 22:2?5*
0 2 61.673 o e S eser
0 3 2090 it ne e e
0 4 199.86 Ty N
10 s 298.56 I Bt Rt el
06 W6® e Gndel  mde  mher
10 7 555,17 5?2:2251’ £§’§:‘§;’8" ié?:g;% 1:%2:%2%
T T X A Ok AU o
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TABLE II (Continued)
Approximation Method o

N Mode Continuous B2 he Symuetry z:: : :;I:
nooa 2 ugt 2 i s
uoo2 e glel  amy  asr e
11 3 120.50 ;1);:22% ;28:2221, 12(1):&6% mg:geuu%
- AL G wra s
R I A LG
A U A i
SRR X B v A
uooe o ome %% ZEY maT aar
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TABLE II (Continued)

Approximation Method

Mode Continuous Passive
h2 ht Symmetry Circuit
0.340% 0.022% 0.416% 0.228¢

1 22.373 22,449 22.378 22,466 22,424
- o.99é$ 0.114% 0.467% 0.538%

2 61.673 61.061 61.743 61.961 62.005
' - 3.573% - 0.025% 0.199% 0.720%

3 120.90 116.58 120.87 121.14 121.77
- 1.395% - 1.516% - 0.520% 0.430%

4 199.86 185.08 196.83 198.82 200.72
-12,%63%% - 5.446% - 1.906% - 0.7T17%

> 298.56 261,65 282.30 292.87 296,42
-18.3229 ~10.856% - 4.295% - 3,132%

6 416.99 340,59 371.72 399.08 403.93
17 -25.097% ~15.494% - 8.086% - 7.17T1%

1 555. 415,84 469.15 510.28 515,36
-32,468% -19.124% -13.590% -13.021%

8 715.08 481.56 576,71 616.17 620.23
8 -40,206% -23.619% -20.910% -20.653%

9 0.3 532,60 680.35 704 .48 706.77
. -48,084% -30.508% -29.850% -29.786%

0 10881 564,93 756.16 163.32 763.98
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TABLE II (Continued)

81

Approximation Method

N Mode Continuous B2 " Symmetry 1(;::: :;I:
131 22,373 Ry o Y eg:ﬂ?
13 2 61.673 -62:22? Py 62:;;? 62:;2?
13 5 120.30 ;ﬁ:ggh ' 128:(;;1% 122:2:8% 122:2(3%
13 L 199.86 ;Bs:i;% ;92;;{9311» ;98:2251, 208:1';20%
R X e i i Ry o
13 6 wmegy % S TWE S 3R ER?
R - v s
S O -l Y i
135 9 890.73 ;g‘;.:géoﬁ 5122238” 732#2* 7;2201’
o0 aoma  gogd SRR TR e
13w Bms gt PO R e
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TABLE II (Continued)
Approximation Method
N Mode Continuous h2 he Symmetry 1(; :i:t::
14 1 22,373 gg:ﬁg? 2322?’ 222212;?% ag:ﬁ;?
w2 o675 1o 62:9(2? Pty 62:359?
14 3 120.90 J-.li:g:&* 128:3'5(8% 12(1)::?% 122:;?%
1 4 199.86 ;8;:22% ;98:);11;0% ;98:2?)0% 202:):{201,
W e GBS gamd o cooms oo
1 6 416.99 ;ﬁ:?ﬁw’ ;92:;271' l:o?igl% faif{f“
1 7 555.17 ;;2:;‘87* ;ocg):gi“ ;32:1;88% ;32::;2%
W8 713.08 ;ﬁﬂh% gii:??” 5532331” ;65:36%
" 9 890.73 ;22:;2”‘ %2223“* %’5;22;“ %31?59*
1k 10 1088.1 ;382?” 5232281, é;g:tgh'p ;Z:gg”
T R Al v L el
L 12 1542.1 ’}%ggu 152.?1::82% 1822;12% 152?(5)7”
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TABLE II (Continued)

83

Approximation Method

N  Mode  Continuous 2 4 Symmet ry g:::i‘i’:
15 1 22,373 o) 122% 2. ?‘7’?% 2. 1232% 2. ;;g%
15 2 61.673 '6‘1’:§8§" 581233% 62:?383% 6%%?2%
R B T v I o o R o o
15 4 199.86 igg: 318% o9, %S% To0. 8207‘ 200, %5%
15 5 298.56 57;{: ;{;h% 5911; : 2:0% 592: 2;6% 2982 %7%
15 6 416.99 ;éé 31%0% l-;oi: ?ﬁl% l:o; 828% ilgi ;{gh%
15 T 555.17 PR E I 1 o S o
15 8 713.08 el * Z30. 336% 6T, ;(9(5% 87gf S
15 9 890. 73 ;55:335* %%’%:Z?l* | éogiiie" él?ﬁlég%
15 10 sl b Jlend dme o
15 11 1305.3 e e LY TS S
51 sk rearcl i L B B s
15 13 1798.7 538:33"* 11331396% sl 15321279%

1205,0
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TABLE II (Concluded)

Approximation Method

N  Mode  Continuous 02 ” Symetry f:: : i‘i,:
16 1 22.373 222%2;% 22:2(7)? 222?28% 22:(5)3?
16 2 61.673 e e evde evan
16 3 120.90 11&1322;1% 1282321% 12%2?91’ 12({:;20%
16 L 199.86 193: gg}% i9g: éll;o% 198: (9)20% 2082 220%
16 5 298.56 276, 326% 59(6):%7% 59(7)2239% 29g:<l>il$
16 6 416.9 ;%3:836” sz ! ﬁlﬁiggh%
16 7T 555.17 e L Tt Ll
O I i - S v o
6 9 890.T3 P et et ésgﬁgge%
16 10 w1 PP GRET o geind oo
16 1 1305.3 522:826% 15;21?)%% 1i<l)§(: é%% 132 :gh&ﬁ
16 12 15421 ;23;’? % 1{§§:§°°% 152&?56% 15282229%
16 13  1798.7 ;3{ 11:88% 1535 §°9* 15?22 22% 15?32 3251’
16 14 2075.1 152; ;73% 152;:(2)181' 1533:;(8“ 15?(13&:;(6”
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TABLE III

MODE FREQUENCIES OF A UNIFORM CANTILEVER BEAM

85

Approximation Method

Mode Continuous n? h* Symmetry g:::i::
1 3.5160 13- T66% e sd
T e e i
2 22,03k 'ei: ?(Sg% gzgﬁ% ;ﬁ:gglé%
) 55160 3. 3564 1.135% 0.549%

3,634 3.5559 3.5353
e eopk 0 Sy
R ‘o el
I T o S e
S - R B
> e T3EF e am e
L > v = s
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TABLE III (Continued)

Approximation Method

N Mode Continuous 12 14 Symmet ry Iéz,ssive

recuit
S e mm m e
6 2 22,034 22 233* 222 fg% 22232% 2;12?
TR ¥ <t L oo v
s v N o
R A A
R
T o o o v
7 3 61.697 '532523* P 62:333% 62:322%
A B - LN
7 5 199.86 ;2?;237* iég:;;% Nl ieg:g:%
T6 mess e G abuag koo

FoNnNo O
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TABLE 1II (Continued)

87

Approximation Method

N  Mde  Continuous = ” Symmetry E:iﬁ
N s oA S NI SNE
8 2 22.034 Y ?7‘16% o, é?(é% . ggg% Y 333%
8 3 61.697 -63: gét% 62: g(gg% 62 gig% 6; lé?g%
8 4 120.90 Ilg: 3?1% hg: I?)T% 20, 825” 105, (2)22%
8 5 199.86 Bt ET R et
B 6 emss  poa oum oo o 5.6
s 7w AEEY EE aEs ase
s 1 s ot SR B S
9 2 22,034 28 : i?i% 22 : 3?#* 22 : fgz% 22 ) i;g%
9 3 61.697 '65119;152 6(1):222% 621333% 62:;38%
I Tt S A o Rty
9 5 199.86 ot AT P e
9 6 298,56 ;?g: g?% ;11;8 313(2% 5782 231% ;822 ﬂh%
9 7 416.99 el G s’ et
9 8 555.17 v of O P ook IV




TABLE III (Continued)

Approximat ion Method

N Mode Continuous B2 p Symetry lgz.ssive

reuit
o s see S L o
10 2 22.03k 22 l{;(f% 22: 353% 22 ig;% 22: LOE%
10 3 61.697 o ae e Py
10 h 120.90 11?4 1338% 113 ;;3% ;28: 823% 12(2): %6%
0 s 998 mET 5 s s
0 6 mese Rt 2 et e
R T U - L L
0o st Bt N e s
o 9 omes gt TR SGT e
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TABLE III (Concluded)

Approximation Method

N Mode Continuous 12 14 Symmetry g:::iwi/:
N TR S S
w2 mow  2NF 0 20F 20 ale
1 3 61.697 P PRty
noov o omeso B 0B N0 e
no s s jmet en bene s
S L A Ly
n o1 mes R S e
T S L ey
no9 mes oS EE S maa
noow wen Rt XH enm eea
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TABLE IV

PINNED BEAM, BASIC h4 APPROXIMATION MODE FREQUENCIES

al?§§‘§ﬁ§k§m§y§nﬁs§sg § ﬁ.ﬁ ? gw

----------------------------

00\0%080‘5 %ng@ashapaea g

l-ﬂ. P\O

----------------------
....................

°°°%°8“$1%°& gaaag

mfﬁﬁﬁgéf..ﬁga§a§a'

DRCAN ]

Fumber of Cells X

39385575 ﬂawa

LI T

SA-RIINRER

DS I I

~§§3§§

.......

Continuous
9.8696
59.'&78 « o o o o :
88.806 <
157.91

2k6.7h
355.31
483.61
€31.65
7994k
10 986.96
1 19k.2
12 1212
13 1668.0
% 193k.4
15 2220.7
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a. Mechonical representation of the simple finite
difference approximation to a uniform beom.
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b. Electrical representation of the simple finite

difference opproximation to a uniform beom.

Fig. 3.
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Anolog computer circuit for a four-cell
cantilever beam using differences of order ht

and second-order equations.

Fig. S.
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